An Algorithm for Harmonics/Inter-harmonics Analysis based on Removing Components and Multi-spectrum-line

Junmin Zhang1,2*, Min Zhao2, Yanan Wu3, Jing Lu3, Yunxiang Tian3,4, Zhi Zheng1
1. Collage of Computer Science, South-Central University for Nationalities, Wuhan 430074, China
2. Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
3. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
4. University of Science and Technology of China, Hefei 230026, China
Email:173902815@qq.com

Abstract-Tokamak power system has not only harmonics and a plenty of inter-harmonics between 75Hz and 150Hz. Considering non-synchronous sampling and in non-integral period truncation, the window and interpolation algorithms have been used to improve the accuracy of harmonic parameter computation by FFT. In this paper, a method based on removing components and multi-spectrum-line interpolation is proposed to analyze harmonics and inter-harmonics. The used spectrum lines must be in not only main-lobe but also between adjacent harmonics. We had proved that the phase difference of any two adjacent spectrum lines is π. According to this rule, this paper has induced a fast algorithm so that modular operation is only calculated one time when we analyze the parameters of one harmonic. Based on the various order’s hamming self-multiplication windows, the simulation and experiment results have shown that the algorithm has high precision and only need one modular operation for one harmonic/inter-harmonic.

Index Terms – Tokamak power supply; harmonic/inter-harmonic analysis; removing components; multi-spectrum-line interpolation

REFERENCES